5 research outputs found

    Experimental investigation of a shielded complementary Metal-Oxide Semiconductor (MOS) structure

    Get PDF
    A shielded integrated complimentary MOS transistor structure is described which is used to prevent field inversion in the region not occupied by the gates and which permits the use of a thinner field oxide, reduces the chip area, and has provision for simplified multilayer connections. The structure is used in the design of a static shift register and results in a 20% reduction in area

    Experimental investigation of a double-diffused MOS structure

    Get PDF
    Self-aligned polysilicon gate technology was applied to double-diffused MOS (DMOS) construction in a manner that retains processing simplicity and effectively eliminates parasitic overlap capacitance because of the self-aligning feature. Depletion mode load devices with the same dimensions as the DMOS transistors were integrated. The ratioless feature results in smaller dimension load devices, allowing for higher density integration with no increase in the processing complexity of standard MOS technology. A number of inverters connected as ring oscillators were used as a vehicle to test the performance and to verify the anticipated benefits. The propagation time-power dissipation product and process related parameters were measured and evaluated. This report includes (1) details of the process; (2) test data and design details for the DMOS transistor, the load device, the inverter, the ring oscillator, and a shift register with a novel tapered geometry for the output stages; and (3) an analytical treatment of the effect of the distributed silicon gate resistance and capacitance on the speed of DMOS transistors

    Improved process for epitaxial deposition of silicon on prediffused substrates

    Get PDF
    Process for fabricating integrated circuits uniformly deposits silicon epitaxially on prediffused substrates without affecting the sublayer diffusion pattern. Two silicon deposits from different sources, and deposited at different temperatures, protect the sublayer pattern from the silicon tetrachloride reaction
    corecore